zephyr/timer.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
// Copyright (c) 2024 EOVE SAS
// Copyright (c) 2024 Linaro LTD
// SPDX-License-Identifier: Apache-2.0
//! Zephyr timers
//!
//! This provides a relatively high-level and almost safe interface to Zephyr's underlying
//! `k_timer`.
//!
//! Every timer starts as a [`StoppedTimer`], which has been allocated, but is not tracking any
//! time. These can either be created through [`StoppedTimer::new`], or by calling `.init_once(())` on a
//! StaticStoppedTimer declared within the `kobject_define!` macro, from [`object`].
//!
//! The `StoppedTimer` has two methods of interest here:
//!
//! - [`start_simple`]: which starts the timer. This timer has methods for robustly getting counts
//! of the number of times it has fired, as well as blocking the current thread for the timer to
//! expire.
//! - [`start_callback`]: which starts the timer, registering a callback handler. This timer will
//! (unsafely) call the callback function, from IRQ context, every time the timer expires.
//!
//! Both of these returned timer types [`SimpleTimer`] and [`CallbackTimer`] have a [`stop`] method
//! that will stop the timer, and give back the original `StoppedTimer`.
//!
//! All of the types implement `Drop` and can dynamic timers can be safely dropped. It is safe to
//! drop a timer allocated through the static object system, but it will then not be possible to
//! re-use that timer.
//!
//! [`object`]: crate::object
//! [`start_simple`]: StoppedTimer::start_simple
//! [`start_callback`]: StoppedTimer::start_callback
//! [`stop`]: SimpleTimer::stop
extern crate alloc;
#[cfg(CONFIG_RUST_ALLOC)]
use alloc::boxed::Box;
use core::ffi::c_void;
use core::marker::PhantomPinned;
use core::pin::Pin;
use core::{fmt, mem};
use crate::object::{Fixed, StaticKernelObject, Wrapped};
use crate::raw::{
k_timer, k_timer_init, k_timer_start, k_timer_status_get, k_timer_status_sync, k_timer_stop,
k_timer_user_data_get, k_timer_user_data_set,
};
use crate::time::Timeout;
/// A Zephyr timer that is not running.
///
/// A basic timer, allocated, but not running.
pub struct StoppedTimer {
/// The underlying Zephyr timer.
item: Fixed<k_timer>,
}
impl StoppedTimer {
/// Construct a new timer.
///
/// Allocates a dynamically allocate timer. The time will not be running.
#[cfg(CONFIG_RUST_ALLOC)]
pub fn new() -> Self {
let item: Fixed<k_timer> = Fixed::new(unsafe { mem::zeroed() });
unsafe {
// SAFETY: The `Fixed` type takes care of ensuring the timer is allocate at a fixed or
// pinned address.
k_timer_init(item.get(), None, None);
}
StoppedTimer { item }
}
/// Start the timer, in "simple" mode.
///
/// Returns the [`SimpleTimer`] representing the running timer. The `delay` specifies the
/// amount of time before the first expiration happens. `period` gives the time of subsequent
/// timer expirations. If `period` is [`NoWait`] or [`Forever`], then the timer will be
/// one-shot
///
/// [`NoWait`]: crate::time::NoWait
/// [`Forever`]: crate::time::Forever
pub fn start_simple(
self,
delay: impl Into<Timeout>,
period: impl Into<Timeout>,
) -> SimpleTimer {
unsafe {
// SAFETY: The timer will be registered with Zephyr, using fields within the struct.
// The `Fixed` type takes care of ensuring that the memory is not used. Drop will call
// `stop` to ensure that the timer is unregistered before the memory is returned.
k_timer_start(self.item.get(), delay.into().0, period.into().0);
}
SimpleTimer {
item: Some(self.item),
}
}
/// Start the timer in "callback" mode.
///
/// Returns the [`CallbackTimer`] representing the running timer. The `delay` specifies the
/// amount of time before the first expiration happens. `period` gives the time of subsequent
/// timer expirations. If `period` is [`NoWait`] or [`Forever`], then the timer will be one
/// shot.
///
/// Each time the timer expires, The callback function given by the `Callback` will be called
/// from IRQ context. Much of Zephyr's API is unavailable from within IRQ context. Some useful
/// things to use are data that is wrapped in a [`SpinMutex`], a channel [`Sender`] from a
/// bounded channel, or a [`Semaphore`], which can has it's `give` method available from IRQ
/// context.
///
/// Because the callback is registered with Zephyr, the resulting CallbackTimer must be pinned.
///
/// [`NoWait`]: crate::time::NoWait
/// [`Forever`]: crate::time::Forever
/// [`SpinMutex`]: crate::sync::SpinMutex
/// [`Semaphore`]: crate::sys::sync::Semaphore
/// [`Sender`]: crate::sync::channel::Sender
pub fn start_callback<T>(
self,
callback: Callback<T>,
delay: impl Into<Timeout>,
period: impl Into<Timeout>,
) -> Pin<Box<CallbackTimer<T>>>
where
T: Send + Sync,
{
CallbackTimer::new(self, callback, delay, period)
}
}
impl fmt::Debug for StoppedTimer {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "StoppedTimer {:?}", self.item.get())
}
}
impl Default for StoppedTimer {
fn default() -> Self {
Self::new()
}
}
/// A statically allocated `k_timer` (StoppedTimer).
///
/// This is intended to be used from within the `kobj_define!` macro. It declares a static
/// `k_timer` that will be properly registered with the Zephyr object system (and can be used from
/// userspace). Call `[init_once`] to get the `StoppedTimer` that it represents.
///
/// [`init_once`]: StaticStoppedTimer::init_once
pub type StaticStoppedTimer = StaticKernelObject<k_timer>;
// SAFETY: The timer itself is not associated with any particular thread, but it is unclear if they
// are safe to use from multiple threads. As such, we'll declare this as Send, !Sync.
unsafe impl Send for StoppedTimer {}
impl Wrapped for StaticKernelObject<k_timer> {
type T = StoppedTimer;
/// No initializers.
type I = ();
fn get_wrapped(&self, _arg: Self::I) -> StoppedTimer {
let ptr = self.value.get();
unsafe {
// SAFETY: The ptr is static, so it is safe to have Zephyr initialize. The callback is
// safe as it checks if the user data has been set. The callback is needed for the
// callback version of the timer.
k_timer_init(ptr, None, None);
}
StoppedTimer {
item: Fixed::Static(ptr),
}
}
}
/// A simple timer.
///
/// A SimpleTimer represents a running Zephyr `k_timer` that does not have a callback registered.
/// It can only be created by calling [`StoppedTimer::start_simple`].
pub struct SimpleTimer {
/// The underlying Zephyr timer. Option is needed to coordinate 'stop' and 'drop'.
item: Option<Fixed<k_timer>>,
}
impl SimpleTimer {
/// Read the count from the timer.
///
/// Returns the number of times the timer has fired since the last time either this method or
/// [`read_count_wait`] was called.
///
/// This works via an internal counter, that is atomically reset to zero when the current value
/// of the counter is read.
///
/// [`read_count_wait`]: Self::read_count_wait
pub fn read_count(&mut self) -> u32 {
unsafe {
// SAFETY: As long as the timer's data is allocated, this call is safe in Zephyr.
k_timer_status_get(self.item_ptr())
}
}
/// Read the count from the timer, waiting for it to become non-zero.
///
/// Blocks the current thread until the timer has fired at least once since the last call to
/// this method or [`read_count`]. Once it has fired, will return the count. This will return
/// immediately if the timer has already fired once since the last time.
///
/// [`read_count`]: Self::read_count
pub fn read_count_wait(&mut self) -> u32 {
unsafe {
// SAFETY: As long as the timer's data is allocated, this call is safe in Zephyr.
k_timer_status_sync(self.item_ptr())
}
}
/// Restart the current timer.
///
/// This resets the fired counter back to zero, and sets a new `delay` and `period` for the
/// timer. It is mostly equivalent to `self.stop().start_simple(delay, period)`, but saves the
/// step of having to stop the timer.
pub fn restart(&mut self, delay: impl Into<Timeout>, period: impl Into<Timeout>) {
unsafe {
// SAFETY: According to zephyr docs, it is safe to `start` a running timer, and the
// behavior is as described here.
k_timer_start(self.item_ptr(), delay.into().0, period.into().0);
}
}
/// Get the item pointer, assuming it is still present.
fn item_ptr(&self) -> *mut k_timer {
self.item
.as_ref()
.expect("Use of SimpleTimer after stop")
.get()
}
/// Stop the timer.
///
/// Stops the timer, so that it will not fire any more, converting the timer back into a
/// StoppedTimer.
pub fn stop(mut self) -> StoppedTimer {
// Actually do the stop.
let item = self.raw_stop();
let item = item.expect("Error in stop/drop interaction");
StoppedTimer { item }
}
/// Attempt to stop the timer, if it is still present. Returns the possible inner item.
fn raw_stop(&mut self) -> Option<Fixed<k_timer>> {
let item = self.item.take();
if let Some(ref item) = item {
unsafe {
// SAFETY: This call, in Zephyr, removes the timer from any queues. There must also
// not be any threads blocked on `read_count_wait`, which will be the case because
// this is `self` and there can be no other references to the timer in Rust.
k_timer_stop(item.get())
}
}
item
}
}
impl Drop for SimpleTimer {
fn drop(&mut self) {
// Stop the timer, discarding the inner item.
let _ = self.raw_stop();
}
}
/// A timer callback. The function will be called in IRQ context being passed the given data.
/// Note that this handler owns the data, but passes a reference to the handler. This will
/// typically be a `SpinMutex` to allow for proper sharing with IRQ context.
pub struct Callback<T: Send + Sync> {
/// The callback function.
pub call: fn(data: &T),
/// The data passed into the callback.
pub data: T,
}
/// A zephyr timer that calls a callback each time the timer expires.
///
/// Each time the timer fires, the callback will be called. It is important to note the data
/// associated with the timer must be both `Send` and `Sync`. As the callback will be called from
/// interrupt context, a normal `Mutex` cannot be used. For this purpose, there is a [`SpinMutex`]
/// type that protects the data with a spin lock. Other useful things a pass as data to the
/// callback are [`Sender`] from a bounded channel, and a [`Semaphore`].
///
/// [`SpinMutex`]: crate::sync::SpinMutex
/// [`Sender`]: crate::sync::channel::Sender
/// [`Semaphore`]: crate::sys::sync::Semaphore
pub struct CallbackTimer<T: Send + Sync> {
/// The underlying Zephyr timer.
item: Option<Fixed<k_timer>>,
/// The callback used for expiry.
expiry: Callback<T>,
/// Marker to prevent unpinning.
_marker: PhantomPinned,
}
impl<T: Send + Sync> CallbackTimer<T> {
fn new(
item: StoppedTimer,
callback: Callback<T>,
delay: impl Into<Timeout>,
period: impl Into<Timeout>,
) -> Pin<Box<CallbackTimer<T>>> {
let this = Box::pin(CallbackTimer {
item: Some(item.item),
expiry: callback,
_marker: PhantomPinned,
});
// Set the timer's expiry function.
unsafe {
// SAFETY: The timer is not running as this came from a stopped timer. Therefore there
// are no races with timers potentially using the callback function.
//
// After we set the expiry function, the timer will be started with `k_timer_start`,
// which includes the necessary memory barrier to that the timer irq will see the updated
// callback function and user data.
let item_ptr = this.item_ptr();
(*item_ptr).expiry_fn = Some(Self::timer_expiry);
let raw = &this.expiry as *const _ as *const c_void;
k_timer_user_data_set(item_ptr, raw as *mut c_void);
k_timer_start(item_ptr, delay.into().0, period.into().0);
}
this
}
/// The timer callback. Called in IRQ context, by Zephyr.
unsafe extern "C" fn timer_expiry(ktimer: *mut k_timer) {
// The user data comes back from Zephyr as a `* mut`, even though that is not sound.
let data = unsafe {
// SAFETY: The user data pointer was set above to the pinned expiry. It will be
// unregistered, as set as null when drop is called. Although the timer will also be
// stopped, the callback should be safe as this function checks.
k_timer_user_data_get(ktimer)
};
if data.is_null() {
return;
}
let cb: &Callback<T> = &*(data as *const Callback<T>);
(cb.call)(&cb.data);
}
/// Get the item pointer, assuming it is still present.
fn item_ptr(&self) -> *mut k_timer {
self.item
.as_ref()
.expect("Use of SimpleTimer after stop")
.get()
}
/// Stop the timer.
///
/// Stops the timer, so that it will not fire any more, converting the timer back into a
/// StoppedTimer.
pub fn stop(mut self) -> StoppedTimer {
// Actually do the stop.
let item = self.raw_stop();
let item = item.expect("Error in stop/drop interaction");
StoppedTimer { item }
}
/// Stop the timer. Returns the inner item.
fn raw_stop(&mut self) -> Option<Fixed<k_timer>> {
let item = self.item.take();
if let Some(ref item) = item {
unsafe {
// SAFETY: Stopping the timer removes it from any queues. There must not be threads
// blocked, which is enforced by this only being called from either `stop` or
// `drop`. Once this has been stopped, it is then safe to remove the callback. As
// there will be no more timer operations until the timer is restarted, which will
// have a barrier, this is also safe.
let raw_item = item.get();
k_timer_stop(raw_item);
(*raw_item).expiry_fn = None;
}
}
item
}
}
impl<T: Send + Sync> Drop for CallbackTimer<T> {
fn drop(&mut self) {
// Stop the timer, discarding the inner item.
let _ = self.raw_stop();
}
}