zephyr/sys/thread.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
//! Zephyr low level threads
//!
//! This is a fairly low level (but still safe) interface to Zephyr threads. This is intended to
//! work the same way as threads are typically done on Zephyr systems, where the threads and their
//! stacks are statically allocated, a code is called to initialize them.
//!
//! In addition, there are some convenience operations available that require allocation to be
//! available.
//!
//! ## Usage
//!
//! Each thread needs a stack associated with it. The stack and the thread should be defined as
//! follows:
//! ```
//! kobj_defined! {
//! static MY_THREAD: StaticThread;
//! static MY_THREAD_STACK: StaticThreadStack<2048>;
//! }
//! ```
//!
//! Each of these has a [`init_once`] method that returns the single usable instance. The
//! StaticThread takes the stack retrieved by take as its argument. This will return a
//! ThreadStarter, where various options can be set on the thread, and then it started with one of
//! `spawn`, or `simple_spawn` (spawn requires `CONFIG_RUST_ALLOC`).
//!
//! Provided that `CONFIG_RUST_ALLOC` has been enabled (recommended): the read can be initialized as
//! follows:
//! ```
//! let mut thread = MY_THREAD.init_once(MY_THREAD_STACK.init_once(()).unwrap()).unwrap();
//! thread.set_priority(5);
//! let child = thread.spawn(|| move {
//! // thread code...
//! });
//! ```
//!
//! [`init_once`]: StaticKernelObject::init_once
#[cfg(CONFIG_RUST_ALLOC)]
extern crate alloc;
#[cfg(CONFIG_RUST_ALLOC)]
use alloc::boxed::Box;
use core::{cell::UnsafeCell, ffi::{c_int, c_void, CStr}, mem};
use zephyr_sys::{
k_tid_t,
k_thread,
k_thread_entry_t,
k_thread_create,
k_thread_name_set,
z_thread_stack_element,
ZR_STACK_ALIGN,
ZR_STACK_RESERVED,
};
use super::K_NO_WAIT;
use crate::{align::AlignAs, object::{StaticKernelObject, Wrapped}, sync::atomic::AtomicUsize};
/// Adjust the stack size for alignment. Note that, unlike the C code, we don't include the
/// reservation in this, as it has its own fields in the struct.
pub const fn stack_len(size: usize) -> usize {
size.next_multiple_of(ZR_STACK_ALIGN)
}
#[doc(hidden)]
/// A Zephyr stack declaration.
///
/// It isn't meant to be used directly, as it needs additional decoration about linker sections and
/// such. Unlike the C declaration, the reservation is a separate field. As long as the SIZE is
/// properly aligned, this should work without padding between the fields.
pub struct RealStaticThreadStack<const SIZE: usize> {
#[allow(dead_code)]
align: AlignAs<ZR_STACK_ALIGN>,
#[allow(dead_code)]
pub data: UnsafeCell<[z_thread_stack_element; SIZE]>,
#[allow(dead_code)]
extra: [z_thread_stack_element; ZR_STACK_RESERVED],
}
unsafe impl<const SIZE: usize> Sync for RealStaticThreadStack<SIZE> {}
/// The dynamic stack value, which wraps the underlying stack.
///
/// TODO: constructor instead of private.
pub struct ThreadStack {
/// Private
pub base: *mut z_thread_stack_element,
/// Private
pub size: usize,
}
#[doc(hidden)]
pub struct StaticThreadStack {
pub base: *mut z_thread_stack_element,
pub size: usize,
}
unsafe impl Sync for StaticKernelObject<StaticThreadStack> {}
/*
// Let's make sure I can declare some of this.
pub static TEST_STACK: RealStaticThreadStack<1024> = unsafe { ::core::mem::zeroed() };
pub static TEST: StaticKernelObject<StaticThreadStack> = StaticKernelObject {
value: UnsafeCell::new(StaticThreadStack {
base: TEST_STACK.data.get() as *mut z_thread_stack_element,
size: 1024,
}),
init: AtomicUsize::new(0),
};
pub fn doit() {
TEST.init_once(());
}
*/
impl Wrapped for StaticKernelObject<StaticThreadStack> {
type T = ThreadStack;
type I = ();
fn get_wrapped(&self, _args: Self::I) -> Self::T {
// This is a bit messy. Whee.
let stack = self.value.get();
let stack = unsafe { &*stack };
ThreadStack {
base: stack.base,
size: stack.size,
}
}
}
impl StaticKernelObject<StaticThreadStack> {
/// Construct a StaticThreadStack object.
///
/// This is not intended to be directly called, but is used by the [`kobj_define`] macro.
#[doc(hidden)]
pub const fn new_from<const SZ: usize>(real: &RealStaticThreadStack<SZ>) -> Self {
Self {
value: UnsafeCell::new(StaticThreadStack {
base: real.data.get() as *mut z_thread_stack_element,
size: SZ,
}),
init: AtomicUsize::new(0),
}
}
/// Construct an array of StaticThreadStack kernel objects, based on the same sized array of the
/// RealStaticThreadStack objects.
///
/// This is not intended to be directly called, but is used by the [`kobj_define`] macro.
#[doc(hidden)]
pub const fn new_from_array<const SZ: usize, const N: usize>(
real: &[RealStaticThreadStack<SZ>; N],
) -> [Self; N] {
// Rustc currently doesn't support iterators in constant functions, but it does allow simple
// looping. Since the value is not Copy, we need to use the MaybeUninit with a bit of
// unsafe. This initialization is safe, as we loop through all of the entries, giving them
// a value.
//
// In addition, MaybeUninit::uninit_array is not stable, so do this the old unsafe way.
// let mut res: [MaybeUninit<Self>; N] = MaybeUninit::uninit_array();
// Note that `mem::uninitialized` in addition to being deprecated, isn't const. But, since
// this is a const computation, zero-filling shouldn't hurt anything.
let mut res: [Self; N] = unsafe { mem::zeroed() };
let mut i = 0;
while i < N {
res[i] = Self::new_from(&real[i]);
i += 1;
}
res
}
}
/// A single Zephyr thread.
///
/// This wraps a `k_thread` type within Rust. This value is returned from
/// [`StaticThread::init_once`] and represents an initialized thread that hasn't been started.
pub struct Thread {
raw: *mut k_thread,
stack: ThreadStack,
/// The initial priority of this thread.
priority: c_int,
/// Options given to thread creation.
options: u32,
/// The name to be given to the thread, if desired.
name: Option<&'static CStr>,
}
/// A statically defined thread.
pub type StaticThread = StaticKernelObject<k_thread>;
unsafe impl Sync for StaticThread {}
impl Wrapped for StaticKernelObject<k_thread> {
type T = Thread;
type I = ThreadStack;
fn get_wrapped(&self, stack: Self::I) -> Self::T {
Thread {
raw: self.value.get(),
stack,
priority: 0,
options: 0,
name: None,
}
}
}
impl Thread {
/// Set the priority the thread will be created at.
pub fn set_priority(&mut self, priority: c_int) {
self.priority = priority;
}
/// Set the value of the options passed to thread creation.
pub fn set_options(&mut self, options: u32) {
self.options = options;
}
/// Set a name for this thread.
///
/// Attempts to set the name of this thread, if Zephyr if configured to do so. Has no effect
/// otherwise.
pub fn set_name(&mut self, name: &'static CStr) {
self.name = Some(name);
}
/// Simple thread spawn. This is unsafe because of the raw values being used. This can be
/// useful in systems without an allocator defined.
pub unsafe fn simple_spawn(mut self,
child: k_thread_entry_t,
p1: *mut c_void,
p2: *mut c_void,
p3: *mut c_void)
{
let tid = k_thread_create(
self.raw,
self.stack.base,
self.stack.size,
child,
p1,
p2,
p3,
self.priority,
self.options,
K_NO_WAIT);
self.set_thread_name(tid);
}
#[cfg(CONFIG_RUST_ALLOC)]
/// Spawn a thread, with a closure.
///
/// This requires allocation to be able to safely pass the closure to the other thread.
pub fn spawn<F: FnOnce() + Send + 'static>(mut self, child: F) {
use core::ptr::null_mut;
let child: closure::Closure = Box::new(child);
let child = Box::into_raw(Box::new(closure::ThreadData {
closure: child,
}));
unsafe {
let tid = k_thread_create(
self.raw,
self.stack.base,
self.stack.size,
Some(closure::child),
child as *mut c_void,
null_mut(),
null_mut(),
self.priority,
self.options,
K_NO_WAIT);
self.set_thread_name(tid);
}
}
fn set_thread_name(&mut self, tid: k_tid_t) {
if let Some(name) = self.name {
unsafe {
k_thread_name_set(tid, name.as_ptr());
}
}
}
}
/*
use zephyr_sys::{
k_thread, k_thread_create, k_thread_start, z_thread_stack_element, ZR_STACK_ALIGN, ZR_STACK_RESERVED
};
use core::{cell::UnsafeCell, ffi::c_void, ptr::null_mut};
use crate::{align::AlignAs, object::{KobjInit, StaticKernelObject}};
#[cfg(CONFIG_RUST_ALLOC)]
extern crate alloc;
#[cfg(CONFIG_RUST_ALLOC)]
use alloc::boxed::Box;
#[cfg(CONFIG_RUST_ALLOC)]
use core::mem::ManuallyDrop;
use super::K_FOREVER;
/// Adjust the stack size for alignment. Note that, unlike the C code, we don't include the
/// reservation in this, as it has its own fields in the struct.
pub const fn stack_len(size: usize) -> usize {
size.next_multiple_of(ZR_STACK_ALIGN)
}
/// A Zephyr stack declaration. It isn't meant to be used directly, as it needs additional
/// decoration about linker sections and such. Unlike the C declaration, the reservation is a
/// separate field. As long as the SIZE is properly aligned, this should work without padding
/// between the fields.
pub struct ThreadStack<const SIZE: usize> {
#[allow(dead_code)]
align: AlignAs<ZR_STACK_ALIGN>,
data: UnsafeCell<[z_thread_stack_element; SIZE]>,
#[allow(dead_code)]
extra: [z_thread_stack_element; ZR_STACK_RESERVED],
}
unsafe impl<const SIZE: usize> Sync for ThreadStack<SIZE> {}
impl<const SIZE: usize> ThreadStack<SIZE> {
/// Get the size of this stack. This is the size, minus any reservation. This is called `size`
/// to avoid any confusion with `len` which might return the actual size of the stack.
pub fn size(&self) -> usize {
SIZE
}
/// Return the stack base needed as the argument to various zephyr calls.
pub fn base(&self) -> *mut z_thread_stack_element {
self.data.get() as *mut z_thread_stack_element
}
/// Return the token information for this stack, which is a base and size.
pub fn token(&self) -> StackToken {
StackToken { base: self.base(), size: self.size() }
}
}
/// Declare a variable, of a given name, representing the stack for a thread.
#[macro_export]
macro_rules! kernel_stack_define {
($name:ident, $size:expr) => {
#[link_section = concat!(".noinit.", stringify!($name), ".", file!(), line!())]
static $name: $crate::sys::thread::ThreadStack<{$crate::sys::thread::stack_len($size)}>
= unsafe { ::core::mem::zeroed() };
};
}
/// A single Zephyr thread.
///
/// This wraps a `k_thread` type within Zephyr. This value is returned
/// from the `StaticThread::spawn` method, to allow control over the start
/// of the thread. The [`start`] method should be used to start the
/// thread.
///
/// [`start`]: Thread::start
pub struct Thread {
raw: *mut k_thread,
}
unsafe impl Sync for StaticKernelObject<k_thread> { }
impl KobjInit<k_thread, Thread> for StaticKernelObject<k_thread> {
fn wrap(ptr: *mut k_thread) -> Thread {
Thread { raw: ptr }
}
}
// Public interface to threads.
impl Thread {
/// Start execution of the given thread.
pub fn start(&self) {
unsafe { k_thread_start(self.raw) }
}
}
/// Declare a global static representing a thread variable.
#[macro_export]
macro_rules! kernel_thread_define {
($name:ident) => {
// Since the static object has an atomic that we assume is initialized, let the compiler put
// this in the data section it finds appropriate (probably .bss if it is initialized to zero).
// This only matters when the objects are being checked.
// TODO: This doesn't seem to work with the config.
// #[cfg_attr(not(CONFIG_RUST_CHECK_KOBJ_INIT),
// link_section = concat!(".noinit.", stringify!($name), ".", file!(), line!()))]
static $name: $crate::object::StaticKernelObject<$crate::raw::k_thread> =
$crate::object::StaticKernelObject::new();
// static $name: $crate::sys::thread::Thread = unsafe { ::core::mem::zeroed() };
};
}
/// For now, this "token" represents the somewhat internal information about thread.
/// What we really want is to make sure that stacks and threads go together.
pub struct StackToken {
base: *mut z_thread_stack_element,
size: usize,
}
// This isn't really safe at all, as these can be initialized. It is unclear how, if even if it is
// possible to implement safe static threads and other data structures in Zephyr.
/// A Statically defined Zephyr `k_thread` object to be used from Rust.
///
/// This should be used in a manner similar to:
/// ```
/// const MY_STACK_SIZE: usize = 4096;
///
/// kobj_define! {
/// static MY_THREAD: StaticThread;
/// static MY_STACK: ThreadStack<MY_STACK_SIZE>;
/// }
///
/// let thread = MY_THREAD.spawn(MY_STACK.token(), move || {
/// // Body of thread.
/// });
/// thread.start();
/// ```
pub type StaticThread = StaticKernelObject<k_thread>;
// The thread itself assumes we've already initialized, so this method is on the wrapper.
impl StaticThread {
/// Spawn this thread to the given external function. This is a simplified version that doesn't
/// take any arguments. The child runs immediately.
pub fn simple_spawn(&self, stack: StackToken, child: fn() -> ()) -> Thread {
self.init_help(|raw| {
unsafe {
k_thread_create(
raw,
stack.base,
stack.size,
Some(simple_child),
child as *mut c_void,
null_mut(),
null_mut(),
5,
0,
K_FOREVER,
);
}
});
self.get()
}
#[cfg(CONFIG_RUST_ALLOC)]
/// Spawn a thread, running a closure. The closure will be boxed to give to the new thread.
/// The new thread runs immediately.
pub fn spawn<F: FnOnce() + Send + 'static>(self, stack: StackToken, child: F) -> Thread {
let child: closure::Closure = Box::new(child);
let child = Box::into_raw(Box::new(closure::ThreadData {
closure: ManuallyDrop::new(child),
}));
self.init_help(move |raw| {
unsafe {
k_thread_create(
raw,
stack.base,
stack.size,
Some(closure::child),
child as *mut c_void,
null_mut(),
null_mut(),
5,
0,
K_FOREVER,
);
}
});
self.get()
}
}
unsafe extern "C" fn simple_child(
arg: *mut c_void,
_p2: *mut c_void,
_p3: *mut c_void,
) {
let child: fn() -> () = core::mem::transmute(arg);
(child)();
}
*/
#[cfg(CONFIG_RUST_ALLOC)]
/// Handle the closure case. This invokes a double box to rid us of the fat pointer. I'm not sure
/// this is actually necessary.
mod closure {
use super::Box;
use core::ffi::c_void;
pub type Closure = Box<dyn FnOnce()>;
pub struct ThreadData {
pub closure: Closure,
}
pub unsafe extern "C" fn child(child: *mut c_void, _p2: *mut c_void, _p3: *mut c_void) {
let thread_data: Box<ThreadData> = unsafe { Box::from_raw(child as *mut ThreadData) };
let closure = (*thread_data).closure;
closure();
}
}